
Unlink 1
ID: 866-BSI | Version: 3 | Date: 5/16/08 2:39:39 PM

Unlink
Vulnerable to TOCTOU issues

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-23

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 8585 bytes

Attack Category • Path spoofing or confusion problem

Vulnerability Category • Indeterminate File/Path

• TOCTOU - Time of Check, Time of Use

Software Context • File Management

Location • unistd.h

Description The unlink() function removes a link to a file. If path
names a symbolic link, unlink() removes the
symbolic link named by path and does not affect any
file or directory named by the contents of the
symbolic link. Otherwise, unlink() removes the link
named by the pathname pointed to by path and
decrements the link count of the file referenced by
the link.

The unlinkat() function also removes a link to a file.
See fsattr(5). If the flag argument is 0, the
behavior of unlinkat() is the same as unlink() except
in the processing of its path argument. If path
is absolute, unlinkat() behaves the same as unlink()
and the dirfd argument is unused. If path is
relative and dirfd has the value AT_FDCWD,
defined in <fcntl.h>, unlinkat() also behaves the
same as
unlink(). Otherwise, path is resolved relative to the
directory referenced by the dirfd argument.

If the flag argument is set to the value
AT_REMOVEDIR, defined in <fcntl.h>, unlinkat()
behaves the same as rmdir(2) except in the
processing of the path argument as described above.

When the file's link count becomes 0 and no process
has the file open, the space occupied by the file
will be freed and the file is no longer accessible. If
one or more processes have the file open when
the last link is removed, the link is removed before
unlink() or unlinkat() returns, but the removal of
the file contents is postponed until all references to
the file are closed.

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/35-BSI.html

Unlink 2
ID: 866-BSI | Version: 3 | Date: 5/16/08 2:39:39 PM

The path argument must not name a directory unless
the process has appropriate privileges and the
implementation supports using unlink() and
unlinkat() on directories.

Upon successful completion, unlink() and unlinkat()
will mark for update the st_ctime and st_mtime
fields of the parent directory. If the file's link count
is not 0, the st_ctime field of the file will be
marked for update.

APIs Function Name Comments

_tunlink use; win32

_unlink use; win32

_wunlink use; win32

unlink use

unlinkat

Method of Attack The key issue with respect to TOCTOU
vulnerabilities is that programs make assumptions
about atomicity of actions. It is assumed that
checking the state or identity of a targeted resource
followed by an action on that resource is all one
action. In reality, there is a period of time between
the check and the use that allows either an attacker to
intentionally or another interleaved process or thread
to unintentionally change the state of the targeted
resource and yield unexpected and undesired results.

A TOCTOU attack in regards to unlink() can occur
when

a. A check for the existence of a file, for example,
occurs.

b. An unlink command is executed.

Between a and b, an attacker could, for example, link
the target file (the one to be unlinked) to a known
file. The subsequent unlink would "unlink" the
attacked file.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Generally
applicable.

The most basic
advice for
TOCTOU
vulnerabilities
is to not
perform a check
before the use.
This does not
resolve the

Does not
resolve the
underlying
vulnerability
but limits the
false sense of
security given
by the check.

Unlink 3
ID: 866-BSI | Version: 3 | Date: 5/16/08 2:39:39 PM

underlying
issue of the
execution of
a function on
a resource
whose state and
identity cannot
be assured, but
it does help
to limit the
false sense of
security given
by the check.

Generally
applicable.

Limit the
interleaving
of operations
on files from
multiple
processes.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Generally
applicable.

Limit the spread
of time (cycles)
between the
check and use
of a resource.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Generally
applicable.

Recheck the
resource after
the use call
to verify that
the action
was taken
appropriately.

Effective in
some cases.

Signature Details int unlink(const char *path);
int unlinkat(int dirfd, const char *path, int flag);

Examples of Incorrect Code #include <unistd.h>

char *path = "/modules/pass1";
int unlink_status;
struct stat stats;

stat(path, &stats);

...
unlink_status = unlink(path);

Examples of Corrected Code FILE *safe_open_wplus(char *fname)
{
struct stat lstat_info,
fstat_info;

Unlink 4
ID: 866-BSI | Version: 3 | Date: 5/16/08 2:39:39 PM

FILE *fp; char *mode = "rb+"; /
We perform our own truncation./
int fd;

if(lstat(fname, &lstat_info) == –
1) {
/* If the lstat() failed for
reasons other than the file
not existing, return 0,
specifying error. */
if(errno != ENOENT) { return
0; }
if((fd = open(fname, O_CREAT|
O_EXCL| O_RDWR, 0600)) == –1) {
return 0; } mode = "wb";
}
else {
/* Open an existing file */
if((fd = open(fname, O_RDWR)) ==
–1) { return 0; }
if(fstat(fd, &fstat_info) == –1
||
lstat_info.st_mode !=
fstat_info.st_mode ||
lstat_info.st_ino !=
fstat_info.st_ino ||
lstat_info.st_dev !=
fstat_info.st_dev) {

close(fd);
return 0;
}
/* Turn the file into an empty
file, to mimic w+ semantics. */
ftruncate(fd, 0);
}
/* Open a stdio file over the
low-level one */ fp = fdopen(fd,
mode); if(!fp) {
close(fd); unlink(fname); return
0;
}
return fp;
}

Source References • Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems
the Right Way. Boston, MA: Addison-Wesley
Professional, 2001, ISBN: 020172152X, ch 9

• man page for unlink()

• Microsoft Developer Network Library (MSDN)

• McGraw, Gary & Viega, John. "Building

Secure Software: Race Conditions2."
informit.com (2001).

http://63.240.93.131/articles/article.asp?p=23947&seqNum=3
http://63.240.93.131/articles/article.asp?p=23947&seqNum=3

Unlink 5
ID: 866-BSI | Version: 3 | Date: 5/16/08 2:39:39 PM

Recommended Resource

Discriminant Set Operating Systems • UNIX

• Windows

Language

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

